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Abstract

In this article we study the tropicalization of the Hilbert scheme and its suit-
ability as a parameter space for tropical varieties. We prove that the points of
the tropicalization of the Hilbert scheme have a tropical variety naturally associ-
ated to them. To prove this, we find a bound on the degree of the elements of a
tropical basis of an ideal in terms of its Hilbert polynomial.
As corollary, we prove that the set of tropical varieties defined over an alge-
braically closed valued field only depends on the characteristic pair of the field
and the image group of the valuation.
In conclusion, we examine some simple examples that suggest that the definition
of tropical variety should include more structure than what is usually considered.

1. Introduction

In [17] Speyer and Sturmfels studied the tropicalization of the Grassmannian and found
that it is a parameter space for tropical linear subspaces, just like the ordinary Grass-
mannian in algebraic geometry. This result inspired our study of the tropicalization
of the Hilbert scheme for two reasons: first, Grassmannians are an example of Hilbert
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schemes, and second, the standard construction of the Hilbert scheme realizes it as a
subscheme of a Grassmannian.

The Hilbert scheme is a parameter space for embedded projective varieties. For
this reason, it is natural to ask whether its tropicalization can be considered as a
parameter space for tropical varieties: the idea is to construct a sort of tropical Hilbert
scheme. In this paper we prove the following result in this direction:

Theorem 4.2: Let K be an algebraically closed field with surjective real-valued
valuation. There is a commutative diagram

Hilbn(p) {V ⊂ KPn | V has Hilbert polynomial p}b

Trop(Hilbn(p)) {Trop(V ) ⊂ TPn | V has Hilbert polynomial p}

τ

s

Trop

Where b is the classical correspondence between points of the Hilbert scheme and sub-
schemes of KPn. The map s is surjective.

In order to prove this theorem, we need some properties of tropical bases. We recall
that a tropical basis for an ideal I is a finite set of polynomials generating the ideal and
such that the intersection of the hypersurfaces defined by these polynomials is equal to
the tropicalization of the variety defined by I. Tropical bases are a fundamental tool
in computational tropical geometry, but not very much is known about them. Here we
find the following property, that is of independent interest, and it is the main technical
result of the paper:

Theorem 3.7: Let I be a saturated homogeneous ideal, with Hilbert polynomial p.
Then there exist a tropical basis consisting of polynomials of degree not greater than the
Gotzmann number of p. In particular this bound only depends on p.

This result is a sort of converse of the result proved in [12], where, given an ideal,
they find a tropical basis consisting of a small number of polynomials, which can have
high degree.

The proof of this theorem is based on the following technical lemma, whose proof
uses primary decompositions of polynomial ideals and some commutative algebra.

Lemma 5.5: Let I be a saturated ideal of polynomials. If I contains a monomial,
then it contains a monomial of degree not greater than its arithmetic degree.

To relate this with the Hilbert polynomial, we prove the following result, whose
proof draws heavily from [11]:

Theorem 5.1: Let I be a homogeneous ideal with Hilbert polynomial p. Then
the arithmetic degree of I is not greater than the Gotzmann number of p. Moreover the
bound is optimal: For every Hilbert polynomial p, there exists an ideal I with Hilbert
polynomial p and such that the arithmetic degree of I is exactly the Gotzmann number
of p.

We also point out a nice corollary of theorem 4.2. The definition of tropical variety
depends on the choice of a valued field K, that is used for their construction. For an
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example of this, see [17, Thm. 7.2], where there is an example of dependence on the
characteristic of K. One can construct larger and larger valued fields, and it is a
priori possible to think that if the field is sufficiently large, new tropical varieties may
appear. As a corollary of theorem 4.2, we are able to say that this never happens.
More precisely:

Theorem 4.4: The set of tropical varieties definable over an algebraically closed
valued field only depends on the characteristic pair of the valued field and on the image
of the valuation. If one considers valuations that are surjective on R, the set of tropical
varieties only depends on the characteristic pair.

This statement, which is of independent interest, has, a priori, nothing to do with
the Hilbert scheme, but at the best of our knowledge, no other proof of this result exists
in literature.

In the final part of the paper, we come back to the idea of using the tropicalization
of the Hilbert scheme as a parameter space for tropical varieties. As we said, the
application that associates a tropical variety to a point of the tropicalization of the
Hilbert scheme is surjective (on the set of all tropical varieties that are tropicalizations
of algebraic varieties with a fixed Hilbert polynomial) but is not in general injective. To
understand why this happens we studied two kinds of examples. The first is about the
Hilbert schemes of hypersurfaces. Here one problem is that there are several different
tropical polynomials that define the same function, and thus the same hypersurface,
whenever one of the terms never achieves the maximum. However, it is possible to
adjust things so that the map becomes injective. It is necessary to add some extra
structure to the tropical hypersurfaces, namely to add weights to the maximal faces,
as usual. Once this extra structure is considered, there exists a unique subpolyhedron
P ⊂ Trop (Hilbn(p)) such that the restriction of the correspondence to P is bijective.

We think that this property of the existence of a subpolyhedron that is a “good”
parameter space should probably be true also for the general Hilbert scheme, but in
general it is not clear what is the suitable extra structure. The second kind of examples
is about the Hilbert schemes of the pairs of points in the tropical plane. In this case
adding the weights to the tropical variety structure is not enough and this is because
the tropicalization of the Hilbert scheme seems to remember more information about
the non reduced structure than is expressible by a single integer. This suggests that it
would be necessary to enrich the structure of tropical variety even more.

For the convenience of the reader we include here a brief overview of each section.
Section 2 opens with some essential facts on the Hilbert polynomial and the Gotzmann
number. It then proceeds describing the natural embedding of the Hilbert scheme in
the projective space, through the Grassmannian. This is the embedding that will be
used for the tropicalization. Section 3 contains some general facts on valued fields,
which are necessary to prove theorem 4.4, along with some fundamental facts about
tropical varieties. At the end of the section we state and prove theorem 3.7, although
the proof of a technical lemma is postponed to section 5. The main theorem, 4.2, and
its corollary, theorem 4.4, on the dependence on the base field are stated and proved
in section 4. Section 5 itself is completely devoted to proving lemma 5.5 which is a key
part of the proof of theorem 3.7. To do so we use primary decomposition to investigate
the degree of monomials contained in an ideal, then we use the arithmetic degree, see
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theorem 5.1, to relate the estimates with the Gotzmann number. In the last section we
treat our two examples: hypersurfaces and pairs of points in the projective plane.

2. Preliminaries

2.1. The Hilbert Polynomial

Let k be a field and S = k[x0, . . . , xn], the free graded k-algebra of polynomials in
n+1 variables. We denote by Sd ⊂ S the vector subspace of homogeneous polynomials
of degree d. If I is a homogeneous ideal, we denote its homogeneous parts by Id =
I ∩Sd. The quotient algebra has a natural grading S/I =

⊕
d (S/I)d =

⊕
d Sd/Id. The

Hilbert function of I is the function hI : N−→N defined by:

hI(d) = dimk(Sd/Id) = dimk Sd − dimk Id

It is not difficult to see ([8, Thm. 1.11]) that for every homogeneous ideal I there exists
a number d0 and a polynomial pI of degree s ≤ n, with rational coefficients, such that
for d ≥ d0 we have

hI(d) = pI(d)

The polynomial pI is the Hilbert polynomial of I. Note that pI = pIsat , hence the
Hilbert polynomial only depends on the subscheme of Pn defined by I. Many invariants
of this subscheme may be read from pI , for example the projective dimension of the
subscheme, that we denote here by dim(I) = s = deg(pI), and the degree of the
subscheme, that we denote here by deg(I) = s!as, where asxs is the term of higher
degree of pI .

A numerical polynomial is a polynomial with rational coefficients taking integer
values for all large enough integer arguments. This includes the Hilbert polynomials of
homogeneous ideals. Given a finite sequence of numbers m0, . . . ,ms ∈ Z, with ms 6= 0,
the following formula defines an integer polynomial in x of degree s with term of higher
degree ms

s! x
s:

P(m0, . . . ,ms;x) =

s∑
i=0

(
x+ i

i+ 1

)
−
(
x+ i−mi

i+ 1

)
Moreover, by [2, Lemma 1.3], every numerical polynomial of degree s can be expressed
in the form P(m0, . . . ,ms;x).

There is a simple description of which numerical polynomials are the Hilbert poly-
nomial of some homogeneous ideal: Let m0, . . . ,ms ∈ Z with ms 6= 0. Then there
exists a non-zero homogeneous ideal I ⊂ S with pI = P(m0, . . . ,ms;x) if and only if
s < n and m0 ≥ · · · ≥ ms > 0 (see [11, Cor. 5.7]).

We conclude with some examples. If I = (0), then pI(x) = P(m0, . . . ,mn;x) with
m0 = · · · = mn = 1 (see [2, Chap. 2, 1.15]). If I = (f) is a principal ideal with
deg(f) = d, then pI(x) = P(m0, . . . ,mn−1;x) with m0 = · · · = mn−1 = d (see [2, p.
30]). At the other extreme, if dim(I) = 0, with deg(I) = d, then pI(x) = P(d;x) = d.
If I defines a curve of degree d and arithmetic genus g, then pI(x) = P(

(
d
2

)
+1−g, d;x)

(see [2, Chap. 2, 1.17]). The other easy case is when I is generated by linear forms,
and dim(I) = s. Then pI(x) = P(m0, . . . ,ms;x) with m0 = · · · = ms = 1.
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2.2. Gotzmann number

The expression P(m0, . . . ,ms;x) that we used for the Hilbert polynomial is not the
only one in use. Notably, there is the expression used in the statements of Gotzmann’s
regularity and persistence theorems ([10], [6, Sect. 4.3]):

pI(x) =
r∑
i=1

(
x+ ai − i+ 1

ai

)
with a1 ≥ · · · ≥ ar ≥ 0.

Since we will make use of Gotzmann’s theorems later on, we find it appropriate to
discuss the conversion between this form and the one we introduced earlier. In partic-
ular, we are interested in the Gotzmann number, which is r in this last expression
and m0 in the earlier one. We thank Diane Maclagan for having suggested to us both
the statement and the proof of the next lemma.

Lemma 2.1 Let f be a polynomial, and suppose that f = P(m0, . . . ,ms;x) and
f =

∑r
i=1

(
x+ai−i+1

ai

)
. Then each mk is equal to the number of ais greater or equal to

k. In particular, m0 = r.

Proof. The proof consists mostly in reordering the sums and in a repeated use of the
following property of binomials:(

α

β

)
+

(
α

β + 1

)
=

(
α+ 1

β + 1

)
. (1)

By applying repeatedly the (1) we can change the first form as follows:

s∑
i=0

(
x+ i

i+ 1

)
−
(
x+ i−mi

i+ 1

)
=

s∑
i=0

mi∑
j=1

(
x+ i− j

i

)
.

This form is also unique for any given polynomial because the original one had this
property and they depend on the same set of parameters. We will now consider the
second form for the Hilbert polynomial and try to modify it into this one.

Now note that the degree of a polynomial is s when expressed in the first form
and is equal to a1 in the second one. This means that ai ≤ s for all i and hence if we
go through the integers between 0 and s we will find all the values of the ais. We can
then write

r∑
i=1

(
x+ ai − i+ 1

ai

)
=

s∑
i=0

∑
j|aj=i

(
x+ i− j + 1

i

)
Note that in this expression the second sum is more akin of a “selection” but writing
it in this form has the advantage of making clearer the fact that it can commute with
the other sums. Now we apply the (1) repeatedly:

=

s∑
i=0

∑
j|aj=i

i∑
k=0

(
x+ k − j

k

)
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and reorder the sums:

=

s∑
k=0

s∑
i=k

∑
j|aj=i

(
x+ k − j

k

)
All the two inner sums do is to select the js for which aj ≥ k. Since the expression
inside the sums does not depend on i we can get rid of it. Finally we can make one
last transformation based on the fact that the ais are ordered.

=
s∑

k=0

∑
j|aj≥k

(
x+ k − j

k

)
=

s∑
k=0

maxi{ai≥k}∑
j=1

(
x+ k − j

k

)
.

By comparing this last form with the one we obtained at the beginning, we can say
that mi = maxi{ai ≥ i} which, since the ais are ordered decreasingly, is the same as
the number of ais that are greater or equal to i.

2.3. The embedding of the Hilbert Scheme

The Grassmannian G(n, d) is the set of all the d-dimensional vector subspaces of the
vector space kn. Equivalently, the Grassmannian can be regarded as the set of the
(d− 1)-dimensional projective subspaces of P(kn).

The Grassmannian can be embedded naturally in a projective space via the Plücker
embedding. Let L ⊆ kn be a d-dimensional vector subspace and let v1, . . . , vd be a basis
of L. The embedding can be defined as follows:

G(n, d) ↪→ P
(∧d kn

)
〈v1, . . . , vd〉 7−→ [v1 ∧ · · · ∧ vd]

It is easy to see that, if one considers two different bases for L, the wedge products of
the elements of each base will only differ by a multiplicative constant, meaning that
this map is well defined in the projective space. Moreover this map is injective, because
knowing v1∧ · · · ∧ vd you can write equations for 〈v1, . . . , vd〉. This gives an embedding
of G(n, d) into P

(∧d kn
)

= P
(
k(nd)

)
. The image of this embedding is the set of

alternate tensors of rank 1. Equations for this subset are given by the Plücker ideal,
an ideal generated by quadratic polynomials with integer coefficients. This identifies
the Grassmannian with a projective algebraic variety.

The Grassmannian can be used to construct the embedding of the Hilbert scheme
that we will use later for its tropicalization.

Fix a numerical polynomial p(x) := P(m0, . . . ,ms;x) and a projective space Pn,
such that s < n and m0 ≥ · · · ≥ ms > 0. It is possible to parametrize all closed
subschemes of Pn having Hilbert polynomial p with the closed points of a scheme
Hilbn(p). This scheme is called the Hilbert scheme and is a fine moduli space for the
closed subschemes of Pn up to identity. Now we describe the projective embedding of
this scheme that we will use for the tropicalization.

The Castelnuovo-Mumford regularity of a saturated homogeneous ideal I,
denoted by reg(I), is the smallest integer m such that I is generated in degree not
greater than m and, for every i, the i-th syzygy module of I is generated in degree not
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greater than m+ i (see [8, sec. 20.5 and ex. 20.20], [2, Chap. 2, 2.1 and Lemma 2.4]).
For every d ≥ reg(I)−1 we have hI(d) = pI(d) (see [2, Chap. 2, 2.5]). The fundamental
fact is that for every saturated ideal I its Castelnuovo-Mumford regularity is at most
equal to the Gotzmann number, which only depends on the Hilbert polynomial of I.
This is Gotzmann’s regularity theorem (see [10], [6, Sect. 4.3, Thm. 4.3.2], [2, Chap.
2, Prop. 9.4 and Prop. 10.1]).

Consider the Gotzmann number m0. We have that I = 〈Im0〉sat, hence I is deter-
mined by its component of degree m0. The space Sm0 is a vector space of dimension
N :=

(
n+m0

n

)
and Im0 is a vector subspace of codimension p(m0). We can define the

injective map

{I ⊂ S | I saturated ideal, pI = p} ↪→ G(N,N − p(m0))
I 7→ Im0

Now we want to describe the equations of this embedding of the Hilbert scheme, at
least from a set-theoretical viewpoint. To do this we need the following fact. Given s <
n andm0 ≥ · · · ≥ ms > 0, let I ⊂ S be any homogeneous ideal (possibly non-saturated,
with any Hilbert polynomial), and choose m ≥ m0. If hI(x) ≤ P(m0, . . . ,ms;x) for
x = m, then this holds for every x ≥ m. If hI(x) = P(m0, . . . ,ms;x) for x = m,m+ 1,
then this holds for every x ≥ m. This result comes directly from Gotzmann’s persistence
theorem (see [2, Chap. 2, Prop. 9.5 and Prop. 10.2], [6, Sect. 4.3, Thm 4.3.3]).

This fact gives the equations: we have to consider only the ideals I ⊂ S such that
dim(Im0) = N−p(m0) and dim(Im0+1) ≤

(
n+m0

n−1

)
−p(m0+1). Expressed in the Plücker

coordinates, these relations give equations for the image that are polynomials with
integer coefficients, see [2, Chap. 6, 1.2]. Hence we have identified the Hilbert scheme
Hilbn(p) with a projective algebraic subvariety of the Grassmannian G(N,N −p(m0)).

Composing this embedding with the Plücker embedding allows us to embed the
Hilbert scheme in a projective space as follows: given a homogeneous saturated ideal I
with Hilbert polynomial p let v1, . . . , vd be a basis of Im0 as a vector space. Then the
point of Hilbn(p) corresponding to I is sent into [v1 ∧ · · · ∧ vd].

3. Tropical Varieties

3.1. Valued fields

Let K be an algebraically closed field, with a real-valued valuation v : K∗ 7→ R. We
will always suppose that 1 is in the image of the valuation.

As K is algebraically closed, the image of v is a divisible subgroup of R, that we
will denote by Λv. This subgroup contains Q, hence it is dense in R. Moreover, the
multiplicative group K∗ is a divisible group, hence the homomorphism v : K∗ 7→ Λv has
a section, i.e. there exists a group homomorphism t• : Λv−→K∗ such that v(tw) = w
(see [14, lemma 2.1.13]). Note that t• satisfies tw+w′

= twtw
′ . We will denote t1 by

t ∈ K.
We denote by O = {x ∈ K | − v(x) ≤ 0} the valuation ring of K, and by

m = {x ∈ K | − v(x) < 0} the unique maximal ideal of O. The quotient ∆ = O/m
is the residue field of K, an algebraically closed field. The characteristic pair of
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the valued field K is the pair of numbers cp(K, v) = (char(K), char(∆)). This pair can
assume the values (0, 0), (0, p) or (p, p), where p is a prime number.

In the following we will need to consider valued fields such that the image of the
valuation is surjective into R. Examples of such fields are provided by the fields of
transfinite Puiseux series, also called the field of generalized power series, or the
Malcev-Neumann ring. If ∆ is an algebraically closed field, the set

∆((tR)) =

{∑
w∈R

awt
w | {w ∈ R | aw 6= 0} is well ordered

}

endowed with the operations of sum and product of formal power series is an alge-
braically closed field, with surjective real-valued valuation v(

∑
w∈R awt

w) = min{w ∈
R | aw 6= 0}. The residue field of ∆((tR)) is ∆, and the formal monomials tw form the
section t•.

The remainder of this subsection is devoted to prove a proposition that will be
needed in subsection 4.2. We need to construct some small valued fields first. If k is
a field, consider the field k(t) of rational functions in one variable. There is only one
real-valued valuation on this field that is zero on k∗ and such that v(t) = 1 (see [7,
Thm. 2.1.4]). The image of this valuation is Z and the residue field is k.

In a similar way it is possible to see that every valuation of Q is either zero on
Q∗, or it is the p-adic valuation, for a prime number p (see again [7, Thm. 2.1.4]). The
image of this valuation is Z and the residue field is Fp.

These fields are not algebraically closed, hence we need to extend the valuation
to their algebraic closure. By [7, Thm. 3.1.1] every valuation of a field admits an
extension to the algebraic closure, and by [7, Thm.3.4.3] this extension is again real-
valued. There can be many different ways to construct this extension, but any two of
them are related by an automorphism of the algebraic closure fixing the base field k(t) or
Q, see [7, Thm. 3.2.15]. Hence, up to automorphisms, there exists a unique real-valued
valuation of the field k(t) that is zero on k∗ and such that v(t) = 1. This valuation has
image Q, residue field k and characteristic pair (char(k), char(k)). In the same way,
up to automorphisms, there exists a unique valuation of Q that restricts to the p-adic
valuation on Q. This valuation has image Q, residue field Fp and characteristic pair
(0, p).

We will denote by F(0,0) the field Q(t) with the valuation described above, by F(p,p)

the field Fp(t) with the valuation described above, and by F(0,p) the field Q with the
p-adic valuation. These valued fields are, in some sense, universal, as we show in the
following proposition:

Proposition 3.1 Let K be an algebraically closed field, with a real-valued valuation
v : K∗ 7→ R. Then K contains a subfield F such that (F, v|F) is isomorphic as a valued
field to one of the fields F(0,0),F(p,p),F(0,p).

Proof. If char(K) = p, it contains a copy of Fp. The valuation is zero on F∗p because
the multiplicative group F∗p is cyclic. Choose an element t such that v(t) = 1. Then K
contains a copy of Fp(t). By the arguments above, the valuation restricted to this field
is isomorphic to F(p,p).
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If char(K) = 0, it contains a copy of Q. The valuation, restricted to Q∗, can be
zero or a p-adic valuation. If it is zero, choose an element t such that v(t) = 1. Then
K contains a copy of Q(t), and, by the arguments above, the valuation restricted to
this field is isomorphic to F(0,0). If it is the p-adic valuation, then K contains a copy of
Q, and, by the arguments above, the valuation restricted to this field is isomorphic to
F(0,p).

3.2. Tropical varieties

We denote by T = (R,⊕,�) the tropical semifield, with tropical operations a⊕ b =
max(a, b) and a� b = a+ b.

Let K be an algebraically closed field, with a real-valued valuation v : K∗ 7→ R,
with image Λv. We often prefer to use the opposite function, and we will call it the
tropicalization:

τ : K∗ 7−→ T
x 7−→ −v(x)

The tropicalization map on (K∗)n is the component-wise tropicalization func-
tion:

τ : (K∗)n 7−→ Tn
(x1, . . . , xn) 7−→ (τ(x1), . . . , τ(xn))

The image of this map is Λnv , a dense subset of Rn.
Let I ⊂ K[x1, . . . , xn] be an ideal, and let Z = Z(I) ⊂ Kn be its zero locus, an

affine algebraic variety. The image of Z ∩ (K∗)n under the tropicalization map will
be denoted by τ(Z) and it is a closed subset of Λnv . The tropicalization of Z is the
closure of τ(Z) in Rn, and it will be denoted by Trop(V ). In particular, if v is surjective
(Λv = R) we have τ(V ) = Trop(V ). A tropical variety is the tropicalization of an
algebraic variety. Note that in this way the notion of tropical variety depends on the
choice of the valued field K. We will show in subsection 4.2 that it actually depends
only on the characteristic pair of K and on the value group Λv.

A tropical polynomial is a polynomial in the tropical semifield, an expression
of the form:

φ =
⊕
a∈Nn

φa � x�a = max
a∈Nn

(φa + 〈x, a〉)

where φa ∈ T ∪ {−∞}, there are only a finite number of indices a ∈ Nn such that
φa 6= −∞. Note that here x = (x1, . . . , xn) is a vector of indeterminates. If all the
coefficients φa are −∞, then φ is the null polynomial. If φ is a non null tropical
polynomial, the tropical zero locus of φ is the set

T (φ) =

{
ω ∈ Tn | the max. in max

a∈Nn
(φa + 〈x, a〉) is attained at least twice

}
If φ is the null polynomial, then T (φ) = Tn.

If f =
∑

a∈Nn fax
a ∈ K[x1, . . . , xn] is a polynomial, the tropicalization of f is

the tropical polynomial
τ(f) =

⊕
a∈Nn

τ(fa)� x�a
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where τ(0) = −∞.
The fundamental theorem of tropical geometry (see [14, Thm. 3.2.4]) states that

if I ⊂ K[x1, . . . , xn] is an ideal, then

Trop(Z(I)) =
⋂
f∈I

T (τ(f))

It is also possible to find some finite systems of generators f1, . . . , fr of the ideal
I such that

τ(Z(I)) = T (τ(f1)) ∩ · · · ∩ T (τ(fr))

Such a system of generators is called a tropical basis. It is possible to construct
tropical bases with few polynomials of high degree, as in [12], but we also show that
with the methods similar to the ones of [4, Thm. 2.9] it is possible to construct tropical
bases made up of polynomials of controlled degree, see theorem 3.7.

The following proposition will be used later in subsection 4.2.

Proposition 3.2 Let (K, v) be an algebraically closed valued field as above, let F ⊂ K
be an algebraically closed subfield such that 1 ∈ v(F), and consider the valued field
(F, v|F). Let I ⊂ F[x1, . . . , xn] be an ideal, with zero locus Z = Z(I) ⊂ Fn. Consider
the extension IK of I to K[x1, . . . , xn], with zero locus ZK ⊂ Kn. Then

Trop(Z) = Trop(ZK)

Proof. One inclusion (Trop(Z) ⊂ Trop(ZK)) is obvious because Z ⊂ ZK. To see the
reverse inclusion, note that as I ⊂ IK, we have⋂

f∈I
T (τ(f)) ⊃

⋂
f∈IK

T (τ(f))

and then use the fundamental theorem.

If I ⊂ K[x0, . . . , xn] is a homogeneous ideal, the variety Z = Z(I) is a cone in
Kn+1: if x ∈ Z and λ ∈ K, then λx ∈ Z. The image of Z in the projective space KPn
is a projective variety that we will denote by V = V (I).

The tropicalization Trop(Z) is also a cone but in the tropical sense: if ω ∈ Trop(Z)
and λ ∈ T, then λ� ω = (λ+ ω1, . . . , λ+ ωn) ∈ Trop(Z).

The tropical projective space is the set TPn = Tn+1/ ∼, where ∼ is the
tropical projective equivalence relation:

x ∼ y ⇔ ∃λ ∈ T : λ� x = y ⇔ ∃λ ∈ R : (x0 + λ, . . . , xn + λ) = (y0, . . . , yn)

We will denote by [·] : Tn+1 7→ TPn the projection onto the quotient, and we will
use the homogeneous coordinates notation: [x] = [x0 : · · · : xn]. To visualize TPn
it is possible to identify it with a subset of Tn+1. If i ∈ {0, . . . , n}, the subset {x ∈
Tn+1 | xi = 0} is the analog of an affine piece, and the quotient map [·], restricted
to it, is a bijection. A more invariant way to do the same thing is to consider the set
{x ∈ Tn+1 | x0 + · · ·+ xn = 0}.
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The image of Trop(Z) in the tropical projective space is a tropical projective
variety. There is also a projective tropicalization map, defined on KPn \C, where
C is the union of the coordinate hyperplanes:

τ : KPn \ C 3 [x] 7→ [τ(x0) : · · · : τ(xn)] ∈ TPn

The image of τ will be denoted by P(Λn+1
v ), a dense subset of TPn. If V is a projective

variety in KPn, we will denote by τ(V ) the image of V ∩ (KPn \C) under the projective
tropicalization map, a closed subset of P(Λn+1

v ), and by Trop(V ) the closure of τ(V )
in TPn.

3.3. Initial ideals

As before, letK be an algebraically closed field, with a real-valued valuation v : K∗ 7→ R,
with image Λv.

Let f =
∑

a∈Nn fax
a ∈ K[x1, . . . , xn] be a non-zero polynomial, and let ω =

(ω1, . . . , ωn) ∈ Λnv be a vector. Denote by H the number τ(f)(ω). Now the polynomial
tHf(t−ω1x1, . . . , t

−ωnxn) ∈ O[x1, . . . , xn] \ m[x1, . . . , xn]. Its image in ∆[x1, . . . , xn] is
a non-zero polynomial inω(f), called the initial form of f in ω. If f = 0, we put
inω(f) = 0.

Let I ⊂ K[x1, . . . , xn] be an ideal. The initial ideal of I is the set inω(I) =
{inω(f) | f ∈ I} ⊂ ∆[x1, . . . , xn].

Proposition 3.3 The set inω(I) is an ideal of ∆[x1, . . . , xn].

Proof. If f ∈ inω(I), it is clear that for every monomial xα, the product xαf ∈ inω(I).
We only need to verify that if f, g ∈ inω(I) then f + g ∈ inω(I). If f + g = 0 = inω(0)
there is nothing to prove, hence we can suppose that f + g 6= 0.

Let F,G ∈ I such that inω(F ) = f , inω(G) = g. Up to multiplying by an ele-
ment of the section t•, we may suppose that F (tω1x1, . . . , t

ωnxn), G(tω1x1, . . . , t
ωnxn)

∈ O[x1, . . . , xn] \ m[x1, . . . , xn]. As f + g 6= 0, also (F + G)(tω1x1, . . . , t
ωnxn) ∈

O[x1, . . . , xn] \m[x1, . . . , xn]. Hence inω(F +G) = f + g.

Note that the definitions we have given of the initial form and initial ideal only
work because we suppose that ω ∈ Λnv . If f is a polynomial, inω(f) is a monomial if
and only if the maximum in τ(f)(ω) is attained only once. Therefore tropical varieties
can be described in terms of initial ideals: τ(V (I)) is the set of all ω ∈ Λnv such that
inω(I) contains no monomials, and Trop(V (I)) is the closure of this set.

Lemma 3.4 Let L ⊂ Kn be a vector subspace. Denote by π the quotient of O-modules
π : On−→On/mn = ∆n. Then the image L′ = π(L ∩ On) is a vector subspace of ∆n

with dim∆(L′) = dimK(L).

Proof. L′ is an O-submodule of ∆n, hence it is a vector subspace. Put h = dim∆(L′).
Let v1, . . . , vh be a basis of L′, and complete it with vectors vh+1, . . . , vn to a basis of
∆n. For every i ≤ h it is possible to find an element wi ∈ On ∩L such that π(wi) = vi.
For every i > h it is possible to find an element wi ∈ On such that π(wi) = vi, and wi
is necessarily not in L.
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The elements w1, . . . , wn are linearly independent over K: if a1w1+· · ·+anwn = 0,
and some of the ai are not zero, up to multiplying all the ai’s by an element of the
section t•, we can suppose that all the ai’s are in O, and some of them is not in m.
Then π(a1)v1 + · · ·+ π(an)vn = 0 is a non-trivial linear combination.

Let A = Span(w1, . . . , wh) and B = Span(wh+1, . . . , wn). We know that A ⊂ L.
We only need to show that B ∩ L = (0), this implies L = A.

Let x ∈ B ∩ L, with x = ah+1wh+1 + · · · + anwn. If x 6= 0, up to multiplying all
the ai’s by an element of the section t•, we can suppose that all the ai’s are in O, and
some of them are not in m. Now π(x) = π(ah+1)vh+1 + · · · + π(an)vn ∈ L′ because
x ∈ L. Hence π(x) = 0, and this forces all π(ah+1), . . . , π(an) to be zero, which is a
contradiction.

Proposition 3.5 Let I ⊂ K[x0, . . . , xn] be a homogeneous ideal, and let ω ∈ Λn+1
v .

Then inω(I) is a homogeneous ideal, with the same Hilbert function as I.

Proof. The map

K[x0, . . . , xn] 3 f(x0, . . . , xn) 7→ f(tω1x1, . . . , t
ωnxn) ∈ K[x0, . . . , xn]

is an isomorphism of K[x0, . . . , xn]. Up to this isomorphism, we can suppose that ω = 0.
If f ∈ in0(I), there is F ∈ O[x1, . . . , xn] \ m[x1, . . . , xn] such that f = in0(F ).

The homogeneous components of f are then the initial forms of the homogeneous
components of F not contained in m[x1, . . . , xn]. Hence in0(I) is a homogeneous ideal.

The ideal in0(I) is the image in ∆[x0, . . . , xn] of I ∩O[x0, . . . , xn], via the quotient
map O[x0, . . . , xn] 7→ O[x0, . . . , xn]/m[x0, . . . , xn] = ∆[x0, . . . , xn]. For every d ∈ N,
the homogeneous component of degree d, (in0(I))d, is the image in (∆[x0, . . . , xn])d of
Id ∩ (O[x0, . . . , xn])d. By previous lemma, dim∆((in0(I))d) = dimK(Id).

Note that even if I is a saturated homogeneous ideal, inω(I) need not be saturated.

Proposition 3.6 Let I ⊂ K[x0, . . . , xn] be a saturated homogeneous ideal, with
Hilbert polynomial p. Then for every ω ∈ Λn+1

v , if the initial ideal inω(I) contains
a monomial, it also contains a monomial of degree not greater than the Gotzmann
number of p, here denoted by m0.

Proof. If inω(I) contains a monomial, then its saturation (inω(I))sat also contains a
monomial. By lemma 5.5 (to be proved in the section 5), (inω(I))sat contains a mono-
mial of degree m0.

As (inω(I))sat is saturated, its Hilbert function in degree m0 is equal to its Hilbert
polynomial evaluated in m0, p(m0) (see the discussion in subsection 2.1). The Hilbert
function of inω(I) is equal to the Hilbert function of I. The ideal I is saturated, hence
in degree m0 also this Hilbert function is equal to the Hilbert polynomial p(m0). In
particular, in degree m0, the Hilbert functions of inω(I) and its saturated are equal,
hence their components in degree m0 coincide. The monomial of degree m0 we found
in (inω(I))sat is also in inω(I).

Now we use the previous proposition give a bound on the degree of a tropical basis
of a saturated ideal in terms of its Hilbert polynomial. The tropical basis is constructed
by adapting the methods of [4, Thm. 2.9] to the “non-constant coefficients” case.
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Theorem 3.7 Let I ⊂ K[x0, . . . , xn] be a saturated homogeneous ideal, with Hilbert
polynomial p. As usual, we denote by m0 the Gotzmann number of p. Then there exist
a tropical basis f1, . . . , fr ∈ I such that for all i, deg(fi) ≤ m0. In particular, if Im0

denotes the component of degree m0 of I, we have

Trop(Z(I)) =
⋂

f∈Im0

T (τ(f))

Proof. When ω varies in Λn+1
v , the initial ideals inω(I) assume only a finite number

of values (see [16, Thm. 2.2.1] or [14, Thm. 2.4.11]). We choose ω1, . . . , ωp such that
inω1(I), . . . , inωp(I) are all the initial ideals containing monomials.

For every one of these ωi we will construct a polynomial fi ∈ I in the following
way. As inωi(I) contains a monomial, by the previous proposition we know that it also
contains a monomial xa of degree m0. Choose a basis g1, . . . , gh of (inωi(I))m0

(the
component of degree m0) such that g1 = xa. As the set of all monomials of degree
m0 is a basis of (∆[x0, . . . , xn])m0

, the independent set g1, . . . gh may be extended to a
basis of (∆[x0, . . . , xn])m0

by adding monomials gh+1, . . . gN . Now g1 and gh+1, . . . gN
may also be interpreted as monomials in (K[x0, . . . , xn])m0

. As they are monomials,
for every ω ∈ Λn+1

v we have inω(gj) = gj (for j = 1 or j > h). By reasoning as in the
proof of lemma 3.4, the elements gh+1, . . . , gN give a basis of (K[x0, . . . , xn])m0

/Im0 ,
hence there is a unique expression

g1 = fi +
∑
j>h

cjgj

where fi ∈ Im0 . The polynomial fi is the one we searched for. Note that its construction
only depends on inωi(I), and not on the particular value of ωi realizing this initial ideal.
Now consider any ω such that inω(I) = inωi(I). We want to see that inω(fi) = g1 = xa.
This is because inω(fi) must be a linear combination of g1 and the gj with j > h.
But the gj with j > h form a basis of a vector subspace of (∆[x0, . . . , xn])m0

that is
complementary to inω(I), while inω(fi) is in inω(I). Hence inω(fi) = g1.

Now that we have constructed the polynomials f1, . . . , fp we add to them other
polynomials fp+1, . . . , fr such that they generate the ideal I. We have to prove that, if
T = T (τ(f1)) ∩ · · · ∩ T (fs), we have

Trop(Z(I)) = T

The inclusion Trop(Z(I)) ⊂ T is clear. To show the reverse inclusion, first note that
T is a finite intersection of tropical hypersurfaces, hence it is a Λv-rational polyhedral
complex. In particular, T ∩ Λn+1

v is dense in T . For this reason we only need to verify
that every ω ∈ T ∩ Λn+1

v is in Trop(Z(I)), or, conversely, that if ω ∈ Λn+1
v is not in

Trop(Z(I)), then it is not in T .
We have that inω(I) = inωi(I) for some i. Then the polynomial fi has the property

that inω(fi) is a monomial. Hence ω is not contained in T (τ(fi)).

Note that the technique used in the previous proof to construct the polynomials fi
is similar to the division algorithm in standard Gröbner bases theory. The difference is
that in this case the initial ideals inω(I) are not, in general, monomial ideals hence the
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monomials not contained in inω(I) do not form a basis for a complementary subspace.
To overcome this problem we had to choose a subset of those monomials forming a basis
for a complementary subset, hence the “remainder” of the division is not canonically
determined, but it depends on this choice.

4. Applications

4.1. Tropicalization of the Hilbert Scheme

Let K be an algebraically closed field, with a real-valued valuation v : K∗ 7→ R. Denote
by Λv the image of v, as above. Fix a projective space KPn, and consider a numer-
ical polynomial p(x) := P(m0, . . . ,ms;x) such that s < n and m0 ≥ · · · ≥ ms > 0.
To simplify notation, let N :=

(
n+m0

n

)
, and M =

(
N

p(m0)

)
. Using the embedding de-

scribed in subsection 2.3, we can identify the Hilbert scheme Hilbn(p) with an algebraic
subvariety of the projective space KPM−1, contained in the Plücker embedding of the
Grassmannian G(N,N − p(m0)).

We construct the tropicalization of the Hilbert scheme using this embedding. As
usual we denote by τ (Hilbn(p)) ⊂ P

(
ΛM
)
the image of the Hilbert scheme via the

tropicalization map, and by Trop (Hilbn(p)) its closure in TPM−1. Of course, if Λv = R,
we have τ (Hilbn(p)) = Trop (Hilbn(p)).

For every point x ∈ Hilbn(p), denote by Vx ⊂ KPn the algebraic subscheme
parametrized by x.

Theorem 4.1 Let x, y ∈ Hilbn(p) ⊂ KPM−1. If τ(x) = τ(y), then Trop(Vx) =
Trop(Vy).

Proof. Let I and J be the ideals corresponding, respectively, to Vx and Vy. The homo-
geneous parts Im0 , Jm0 , considered as vector subspaces of Sm0 , corresponds to points of
the Grassmannian G(N,N −p(m0)). By [17, Thm. 3.8] if two points of the Grassman-
nian have the same tropicalization, the linear spaces the parametrize have the same
tropicalization. As we know that τ(x) = τ(y), we have that Trop(Im0) = Trop(Jm0).
More explicitly, this means that

{τ(f) | f ∈ Im0} = {τ(f) | f ∈ Jm0}

By theorem 3.7, this implies that Trop(Vx) = Trop(Vy).

We can sum up what we said so far in the following statement showing that the
tropicalization of the Hilbert scheme can be interpreted as a parameter space for the
set of tropical varieties that are the tropicalization of subschemes with a fixed Hilbert
polynomial.

Theorem 4.2 There is a commutative diagram

Hilbn(p) {V ⊂ KPn | V has Hilbert polynomial p}b

τ(Hilbn(p)) {Trop(V ) ⊂ TPn | V has Hilbert polynomial p}

τ

s

Trop
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where b is the classical correspondence between points of the Hilbert scheme and sub-
schemes of KPn, and s is defined as

s(x) =
⋂

f∈L(x)

T (f)

where L(x) is the tropical linear subspace of the space of tropical polynomials associated
to the point x, seen as a point of the tropical Grassmannian. Moreover, the map s is
surjective.

This parametrization is surjective, but it is in general not injective, as we will see
in section 6. This result extends to the Hilbert schemes a property that was already
known for the tropical Grassmannian (see [17, Thm. 3.8]).

4.2. Dependence on the valued field

The definition of tropical variety, as it was given in subsection 3.2, depends on the
choice of a valued field K. For an example of this, see [17, Thm. 7.2], where a tropical
linear space is exhibited that is the tropicalization of a linear space over a field of
characteristic 2 that cannot be obtained as tropicalization of a linear space over a field
of characteristic 0.

Using the construction of transfinite Puiseux series, one can construct larger and
larger valued fields, and it is a priori possible to think that if the field is sufficiently
large, new tropical varieties may appear. As a corollary of our result about the Hilbert
scheme, we show that that is not the case: the definition of tropical variety only depends
on the characteristic pair of the valued field, and on the image group Λv. If we restrict
our attention only to the largest possible image group, R, we have that the definition
of tropical variety only depends on the characteristic pair of the field.

Theorem 4.3 Let, (K, v), (K′, v′) be two algebraically closed fields, with real-valued
valuations v : K∗ 7→ R, v′ : K′∗ 7→ R. Suppose that cp(K) = cp(K′), and Λv ⊂ Λv′ . Let
V ⊂ KPn be a subscheme. Then there exists a subscheme W ⊂ K′Pn with the same
Hilbert polynomial as V and such that Trop(V ) = Trop(W ).

Proof. Let p be the Hilbert polynomial of V . Consider the Hilbert scheme Hilbn(p).
We claim that the tropical variety Trop(Hilbn(p)) is the same for the two fields K and
K′. This is because, by proposition 3.1 both fields contain a subfield F isomorphic to
one of the fields F(0,0),F(p,p),F(0,p). As we said in subsection 2.3, the Hilbert scheme is
defined by equations with integer coefficients, equations that are not dependent on the
field. By proposition 3.2, Trop(Hilbn(p)) is equal if defined over F or K or K′.

Now if x ∈ Hilbn(p) (over K) is the point corresponding to V , we have that
τ(x) ∈ Trop(Hilbn(p)) ∩ P(ΛMv ). As Λv ⊂ Λv′ , there is a point y ∈ Hilbn(p) (over K′)
such that τ(y) = τ(x). Now let W ⊂ K′Pn be the subscheme corresponding to y. By
theorem 4.2, we have Trop(W ) = Trop(V ).

This theorem can be restated as follows:

Theorem 4.4 The set of tropical varieties definable over an algebraically closed val-
ued field (K, v) only depends on the characteristic pair of (K, v), and on the image
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group Λv. If you suppose Λv = R, the set of tropical varieties only depends on the
characteristic pair of (K, v).

5. Existence of monomials of bounded degree

The aim of this section is to prove lemma 5.5, that was needed above.

5.1. Arithmetic Degree

Let I ⊂ S be a homogeneous ideal. A primary decomposition of I is a decomposition

I =
k⋂
i=1

Qi

where the Qi’s are homogeneous primary ideals, no Qi is contained in the intersection
of the others, and the radicals of the Qi’s are distinct. The radicals Pi =

√
Qi are

called prime ideals associated with I, and they do not depend on the choice of the
decomposition (see [1, p. 51, Thm. 4.5, Thm. 7.13], [8, Sect. 3.5]).

For every i ∈ {1 . . . k} let

Ii =
⋂
{Qj |Pj ( Pi}

If Pi is a minimal prime, then Ii = (1), while if Pi is embedded, then Ii ⊂ Pi. Note that,
even if the primary ideals Qj are not always uniquely determined by I, the ideals Ii and
Ii ∩ Qi are uniquely determined, see [1, Thm. 4.10]. The irrelevant ideal (x0, . . . , xn)
is associated with I if and only if I is not saturated. In this case, if (x0, . . . , xn) = P1,
then the saturation Isat is equal to the ideal I1.

Following [3, p. 27], for every i ∈ {1 . . . k} we define the multiplicity of Pi in I
(written multI(Pi)) as the length ` of a maximal chain of ideals

Qi ∩ Ii = J` ( J`−1 ( · · · ( J1 = Pi ∩ Ii

where every Jj = Rj ∩ Ii for some Pi-primary ideal Rj .
For every r ∈ {−1, . . . , n− 1}, the arithmetic degree of I in dimension r is

arith-degr(I) =
∑

{i | dim(Pi)=r}

multI(Pi) deg(Pi)

If r > dim(I) = max dim(Pi), then we have arith-degr(I) = 0. If s = dim(I), then
we have arith-degs(I) = deg(I). For every 0 ≤ r ≤ dim(I) we have arith-degr(I) =
arith-degr(I

sat). The only prime ideal of dimension −1 is the irrelevant ideal, which
has degree 1. The arithmetic degree in dimension −1 indicates how much I is non
saturated: arith-deg−1(I) = dimk(I

sat/I).
The arithmetic degree of I is

arith-deg(I) =
n∑
i=0

arith-degr(I)

Note that the value arith-deg−1(I) does not appear in the arithmetic degree, in partic-
ular arith-deg(I) = arith-deg(Isat).
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Theorem 5.1 Let I be a homogeneous ideal and let g = P(m0, . . . ,ms;x) be its
Hilbert polynomial. Then for every i ∈ {0, . . . , s}:

s∑
r=i

arith-degr(I) ≤ mi

In particular
arith-deg(I) ≤ m0

Moreover these bounds are optimal: For every Hilbert polynomial g, there exists
an ideal I with Hilbert polynomial g and such that for all i ∈ {0, . . . , s} we have∑s

r=i arith-degr(I) = mi.

Proof. This fact can be deduced by putting together a few results from [11].
For every r ≥ 0, arith-degr(I) = nr(X), where X is the closed subscheme of Pn

defined by I and nr(X) is defined in [11, p. 21, Rem. 3]. See [15, p. 420] for details.
A tight fan is a particular kind of closed subscheme of Pn, see the definition at

the beginning of [11, Chap. 3]. If X is a tight fan with Hilbert polynomial g, then∑s
r=i nr(X) = mi (see [11, Cor. 3.3]).

Given any closed subscheme X of Pn with Hilbert polynomial g, it is possible to
construct a tight fan Y with Hilbert polynomial g and nr(X) ≤ nr(Y ) (as in the proof
of [11, Thm. 5.6]). Hence

∑s
r=i nr(X) ≤

∑s
r=i nr(Y ) = mi.

5.2. Proof of lemma 5.5

We will use the following standard notation. Let I ⊂ S be a homogeneous ideal and
f ∈ S.

(I : f) = {g ∈ S | gf ∈ I}

(I : f∞) = {g ∈ S | ∃n : gfn ∈ I}

See [1, Ex. 1.12] for some properties of (I : f), for example (I : fg) = ((I : f) : g)
and (

⋂
i Ii : f) =

⋂
i(Ii : f). This same properties also hold for (I : f∞): (I : fg∞) =

((I : f∞) : g∞) and (
⋂
i Ii : f∞) =

⋂
i(Ii : f∞).

Let I =
⋂k
i=1Qi be a primary decomposition of I, as above, with

√
Qi = Pi. Up

to reordering, we can suppose that f ∈ P1, . . . , Ph and f 6∈ Ph+1, . . . , Pk.

Lemma 5.2

(I : f∞) =

k⋂
i=h+1

Qi

Proof.

(I : f∞) = (
k⋂
i=1

Qi : f∞) =
k⋂
i=1

(Qi : f∞)

If i ≤ h, we have f ∈ Pi, hence fm ∈ Qi for somem, hence (Qi : fm) = (1) = (Qi : f∞).
If i > h, we have f 6∈ Pi, hence (Qj : f) = Qj by [1, Lemma 4.4], and (Qj : f∞) =

Qj .



18 D. Alessandrini and M. Nesci

We will need a way for estimating multiplicities, and to do that we need to con-
struct some strictly ascending chains.

Lemma 5.3 Consider ideals J,Q ⊂ S and elements f ∈ S and l ∈ N. The following
statements are equivalent:

1. There exists a ∈ J such that af l ∈ Q and af l−1 6∈ Q.
2. The chain

Q ∩ J ⊂ (Q : f) ∩ J ⊂ · · · ⊂ (Q : f l) ∩ J

is strictly ascendant.
3. (Q : f l−1) ∩ J ( (Q : f l) ∩ J .

Proof. (1)⇒ (2): For all i ∈ {1, . . . , l}, af l−i ∈ (Q : f i)∩J , but af l−i 6∈ (Q : f i−1)∩J .
(2)⇒ (3): Trivial.
(3) ⇒ (1): Let a be any element of (Q : f l) ∩ J \ (Q : f l−1) ∩ J . Then a ∈ J ,

af l ∈ Q, but af l−1 6∈ Q.

We will denote by `f (I) the minimum l ∈ N such that (I : f l) = (I : f l+1). Some l
with this property always exist, because the ascending chain of ideals I ⊂ (I : f) ⊂ (I :
f2) ⊂ . . . is stationary. We consider f0 = 1, hence `f (I) = 0 if and only if I = (I : f).
Note that if l ≥ `f (I), then (I : f l) = (I : f∞).

Clearly, if Ji are ideals such that I =
⋂
Ji, then `f (I) ≤ sup `f (Ji).

Lemma 5.4 Let I be an ideal with primary decomposition I =
⋂k
i=1Qi. Then for

every f :
`f (I) ≤

∑
f∈Pi

multI(Pi)

Proof. We reorder the primes such that f ∈ P1, . . . , Ph and f 6∈ Ph+1, . . . , Pk. Let
L(I) =

∑h
i=1 multI(Pi). We need to show that `f (I) ≤ L(I).

We proceed by induction on k, the number of primary components. If k = 1 then
I = Q1 is primary. If x 6∈ P1, then by [1, Lemma 4.4] `f (I) = L(I) = 0. If f ∈ P1,
then the chain

Q1 ( (Q1 : f) ( (Q1 : f2) ( · · · ( (Q1 : f `f (I)−1) ⊂ P1

is a strictly increasing chain of ideals, they are all P1-primary by [1, Lemma 4.4], hence
`f (I) ≤ multI(P1) = L.

For general k, we write Hi = Ii ∩ Qi, where Ii is as in subsection 5.1. As I =⋂k
i=1Hi, then `f (I) ≤ maxki=1 `f (Hi). Moreover for all i, L(Hi) ≤ L(I). Hence we

only need to prove our theorem for ideals of the form Hi: ideals having one primary
component which is embedded in all the others.

We can suppose that I =
⋂k
i=1Qi, with Pi ⊂ P1 for all i > 1, with f ∈ P1. Again

we write Hi = Ii ∩ Qi. Let s = maxki=2 `f (Hi). Up to reordering we can suppose
that s = `f (H2), and that f ∈ P2. By inductive hypothesis, as H2 has less primary
components than I, we know that s ≤ L(H2). If s = `f (I) we are done. We can
suppose that r = `f (I) − s > 0. Now we will prove that r ≤ multI(P1), and this is
enough because then we will have `f (I) ≤ s+ r ≤ L(H2) + multI(P1) ≤ L(I).
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Consider the ideal (I : fs) = (Q1 : fs) ∩
(⋂k

i=2(Hi : fs)
)
. For i ≥ 2, (Hi : fs) =

(Hi : f∞). In particular J =
⋂k
i=2(Hi : fs) =

⋂k
i=h+1Qi by lemma 5.2. Now for i ≥ 0

we have (I : fs+i) = (Q1 : f s+i) ∩ J . The following chain is strictly increasing:

(Q1 : f s) ∩ J ( (Q1 : fs+1) ∩ J ( · · · ( (Q1 : fs+r) ∩ J

By lemma 5.3 there is a ∈ J such that afs+r ∈ Q and afs+r−1 6∈ Q. As we said, for
every i ≥ 2 we have J ⊂ (Hi : f∞) = (Hi : fs). In particular, for every i ≥ 2, afs ∈ Hi.
Hence afs ∈ I1 =

⋂k
i=2Hi. If b = afs ∈ I1, we have bf r ∈ Q and bf r−1 6∈ Q. By

lemma 5.3, we have the strictly ascending chain:

Q1 ∩ I1 ( (Q1 : f) ∩ I1 ( · · · ( (Q1 : f r) ∩ I1

And this implies that r ≤ multI(P1), as required.

Lemma 5.5 Let I be an ideal with primary decomposition I =
⋂k
i=1Qi, and let

B =
∑k

i=1 multI(Pi). Then there exists a monomial xα of degree not greater than B
such that

(I : xα) = (I : x0 · · ·x∞n )

In particular, if I contains a monomial, then I contains a monomial of degree not
greater than B.

If I is saturated, then B ≤ arith-deg(I). If I is saturated and with Hilbert
polynomial P(m0, . . . ,ms;x), then B ≤ m0.

Proof. Up to reordering the primary components, we can suppose that there exist
integers 1 = h0 ≤ · · · ≤ hn+1 ≤ k such that for every i ∈ {0, . . . , n}

xi ∈ Phi , . . . , Phi+1−1 and xi 6∈ Phi+1
, . . . , Pk

Now let αi =
∑hi+1−1

i=hi
multI(Pi). By applying repeatedly lemmas 5.4 and 5.2 we get

(I : xα) = (· · · (I : xα0
0 ) : · · · : xαn

n ) = (· · · (I : x∞0 ) : · · · : x∞n ) = (I : x0 · · ·x∞n )

The ideal I contains a monomial if and only if (I : x0 · · ·x∞n ) = (1) = (I : xα0
0 · · ·xαn

n )
and this happens if and only if I contains xα0

0 · · ·xαn
n .

The last assertion follows from theorem 5.1.

6. Examples

6.1. Hypersurfaces

Let K be an algebraically-closed field, with a surjective real-valued valuation v : K∗ 7→
R. Fix a projective space KPn and a degree d. Consider the Hilbert polynomial
p(x) = P(m0, . . . ,mn−1;x) with m0 = · · · = mn−1 = d. An ideal I ⊂ K[x0, . . . , xn]
has Hilbert polynomial p if and only if I = (f) with f homogeneous with deg(f) = d,
hence Hilbn(p) is the parameter space of hypersurfaces of KPn of degree d. For such
ideals I, the component Id of degree d contains only the scalar multiples of f , hence
it is a one-dimensional linear subspace of Sd, and all one-dimensional linear subspaces
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of Sd are of this form. The Grassmannian of one-dimensional subspaces of Sd is the
projective space P(Sd) = KPN−1 with N :=

(
n+d−1
n−1

)
. This is the space of projective

classes of polynomials of degree d. The embedding of the Hilbert scheme described in
subsection 2.3 is just the identification of Hilbn(p) with KPN−1. Its tropicalization is
Trop (Hilbn(p)) = TPN−1.

In this case it is possible to understand the correspondence from Trop (Hilbn(p))
to the set of tropical hypersurfaces of degree d quite well. Here we want to underline
two facts. One is that this map is not injective. The other is that it is possible to
adjust things so that the map becomes injective. It is necessary to add some extra
structure to the tropical hypersurfaces, namely to add weights to the maximal faces, as
usual. Once this extra structure is considered, there exists a unique subpolyhedron P ⊂
Trop (Hilbn(p)) such that the restriction of the correspondence to P is bijective. We
think that this property of the existence of a subpolyhedron that is a “good” parameter
space should probably be true also for the general Hilbert scheme, but in general it is
not clear what is the suitable extra structure. In the example of the next subsection
we show that in the general case the weights are not enough.

The coordinates in KPN−1 correspond to the coefficients of the polynomial, hence
the tropicalization map τ : KPN−1 \ C 7→ TPN−1 sends the projective class of a ho-
mogeneous polynomial f in the projective class of the tropical polynomial τ(f). Note
that the tropicalization is defined only on KPN−1 \ C, where C is the union of the
coordinate hyperplanes. Hence we are dealing only with homogeneous polynomials of
degree d containing all the monomials of degree d with a non-zero coefficient. This
implies that all these polynomials have the same Newton polytope, a simplex that we
will denote by Q ⊂ Rn+1. Let A = Q ∩ Zn+1 be the set of monomials of degree d.
We use the theory of coherent triangulations (see [9, Chap. 7, Def. 1.3]) and coher-
ent subdivisions (see [9, Chap. 7, Def. 2.3]). The secondary fan of (Q,A) (see [9,
Chap. 7, C])) is a subdivision of the space TN with polyhedral cones. Two points in
the same projective equivalence class belong to the same cone, hence this subdivision
passes to the quotient TPN−1. The maximal cones of the secondary fan correspond to
coherent triangulations. The subpolyhedron P is the union of all the maximal cones
corresponding to triangulations using all the points of A as vertices.

Consider a coherent triangulation not using all the points of A as vertexes, and
consider a tropical polynomial f lying in the corresponding cone. The points of A not
used in the triangulation correspond to monomials of f that never contribute to the
maximum of the polynomial. If you perturb slightly the values of their coefficients, the
tropical variety does not change, but the point of Trop (Hilbn(p)) changes. This shows
that the correspondence is not injective.

6.2. Pairs of points in the tropical projective plane

Let K be an algebraically closed field, with a surjective real-valued valuation v : K∗ 7→
R. Consider the Hilbert scheme Hilb2(2) parameterizing subschemes of the projective
plane KP2 with Hilbert polynomial P(2;x) = 2. We study this example to show a
more interesting situation where the correspondence from Trop (Hilb2(2)) to the set of
tropical varieties is not injective. A more complete analysis of this example has been
subsequently given by Brodsky and Sturmfels in [5].
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A subscheme of KP2 has Hilbert polynomial 2 if and only if it is a pair of distinct
points, or a single point with a tangent space of dimension 1. The ideals of such
schemes can be retrieved from their homogeneous component of degree 2, which is a 4-
dimensional subspace of the vector space of homogeneous polynomials in 3 variables of
degree 2, which has dimension 6. The Grassmannian of 4-dimensional subspaces of S2

is embedded in the projective space KP14 and Hilb2(2) is isomorphic to the symmetric
product of two copies of KP2 blown up along the diagonal. The points outside the
exceptional divisor correspond to the pairs of distinct points, while the points on the
exceptional divisor correspond to singular schemes. We are interested in the latter.

As we said, the singular schemes we find in this setting have a unique point and
a 1-dimensional tangent space at it. These schemes can be reconstructed from the
data of the point and a line passing through it. In this example we are interested in
considering schemes that have the same support while being different as schemes. We
fix a point p = [a : b : c] ∈ KP2. To consider all the schemes supported at p one
has to consider all the lines through p, which are given by polynomials of the type
f := lx0 + mx1 + nx2. These lines are parametrized by a KP1 and thus in Hilb2(2)
the locus of the points parameterizing all the schemes supported at p, Γp, contained in
the exceptional divisor, is isomorphic to KP1. For simplicity, we will restrict ourselves
to the generic case; in particular none of the coordinates of p or the coefficients of f is
zero. We can reduce the number of variables involved: the line has to pass through the
point, meaning that n = −al+bm

c , and since l,m and n are only defined up to a constant,
we can choose m = 1. A scheme supported at p is then defined by the parameter l and
we will denote it by Zl.

Now we want to compute the point of the Hilbert scheme that corresponds to a
scheme Zl. This point is determined by the homogeneous component I2 of the ideal
I defining Zl. To find a basis for I2 we need four independent polynomials in it and,
since I contains f , three of these can be x0f , x1f and x2f . As our fourth generator we
choose (cx0 − ax2)2, which corresponds to one of the lines that we excluded counted
twice. Since f cannot be cx0−ax2 these polynomials are independent and form a basis
for I2. The wedge product of the four polynomials that form the basis is an element
of
∧4 S2. It is convenient to fix a basis and work with coordinates. As a basis of the

vector space S2 we choose the monomials in the order x2
0, x2

1, x2
2, x1x2, x0x1, x0x1. As

a basis of
∧4 S2 we take the wedge products of four out of the six polynomials above,

ordered in the same way, and we order the elements of this base in the lexicographic
order.

Once we compute the wedge product and find the coordinates there are only four
polynomials with more than one term appearing in these expressions, and they are
al+ b, al− b, al+ 2b and 2al+ b. To express the tropicalization of the coordinates we
then need to divide 6 different cases: the first two where v(al) and v(b) are different
and the other four where they are equal and the valuation of one of the four binomials
is higher. For this reason, Trop(Γp) is the union of 6 rays coming out of a point P .
Below we report the coordinates of P , in square brackets, and the six integer vectors
defining each of the six rays. The letters A, B and C stand for the tropicalization of
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a, b and c respectively.

A+B + C
2B + C
B + 2C
B + 2C

3C
−A+B + 3C

3B
2B + C

−A+ 3B + C
−A+ 2B + 2C

2A+B
2A+ C

A+B + C
A+ 2C
A+ 2B



,



1
0
1
1
0
1
1
1
1
1
1
0
1
0
1



,



−1
0
0
0
0
−1
0
0
−1
−1
0
0
0
0
0



,



0
0
−1
0
0
0
−1
0
0
0
−1
0
0
0
−1



,



0
0
0
−1
0
0
0
0
0
0
0
0
0
0
0



,



0
0
0
0
0
0
0
−1
0
0
0
0
0
0
0



,



0
0
0
0
0
0
0
0
0
0
0
0
−1
0
0


Let us now analyze these six rays and understand which schemes’ corresponding

points lie on each ray (see Figure 1). The points on the first ray correspond to the
schemes Zl for which L > B−A. The tropicalization of the line tangent to Zl is defined
by the tropical polynomial τ(f) having coefficients L, 0 and L + A − C. The same is
true for the points on the second ray except that they are those for which L < B − A
and the coefficients of τ(f) are L, 0 and B −C. The points on the third ray are those
for which v(al + b) < v(al) = v(b) = B. For them the coefficients are B − A, 0 and
−v(al + b). Note that, together, these three expressions give us all the tropical lines
passing through the point [A : B : C], which is Trop(Zl).

The points on the last three rays have a different behavior: for all of them and for
the point P the tropicalization of the line is always the same and it is the one that has
its center in [A : B : C].

For any value of l we have that Trop(Zl) is always the same point [A : B : C].
Even if one takes into account the weights (see [14, sec. 3.4]), the weight at [A : B : C]
is always 2. On the other hand there is a natural way to associate to any of the points

Figure 1: A point of Γp corresponds to a scheme in P2 supported at p with one tangent
line. On the right we show what happens when we apply Trop to both p and the
tangent line, depending on which ray of τ(Γp) the point lies on.
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of Trop(Γp) a tropical line through [A : B : C] that is the tropicalization of the tangent
line to Zl. This seems to suggest that one should consider some extra structure on
Trop(Zl) that includes the datum of the tropicalization of the tangent line.
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